Modeling the Impact of Country-Specific Warming on Agricultural Production: Evidence from Southeast Asian Economies
PDF

Keywords

Agricultural Production
Climate Change
Precipitation
Southeast Asia
Temperature

How to Cite

Zoleta, A. (2024). Modeling the Impact of Country-Specific Warming on Agricultural Production: Evidence from Southeast Asian Economies. Southeast Asian Journal of Agriculture and Allied Sciences, 3(1), 39–50. https://doi.org/10.63943/sajaas.vol3iss1art21pp39-50

Abstract

This research explored the relationship between climate change and agricultural production in Southeast Asian economies. Using country-specific ordinary least squares (OLS) regression and panel data analysis, the study modeled the factors that could explain how temperature variations affect agricultural output across the region. The findings indicate that the impact of temperature variability on agricultural productivity is not definitively clear. In addition, Cambodia, Lao PDR, Myanmar, and Vietnam are particularly susceptible to agricultural output losses due to rising temperatures in the region.

https://doi.org/10.63943/sajaas.vol3iss1art21pp39-50
PDF

References

ASEAN. (2023). ASEAN Regional Guidelines for Sustainable Agriculture in ASEAN. ASEAN-CRN. https://asean-crn.org/asean-regional-guidelines-for-sustainable-agriculture-in-asean/

Dufault, R. J., Ward, B., & Hassell, R. L. (2009). Dynamic relationships between field temperatures and romaine lettuce yield and head quality. Scientia Horticulturae, 120(4), 452–459. 10.1016/j.scienta.2009.01.002

Fankhauser, S., & Tol, R. S. J. (1997). The Social Costs of Climate Change: The IPCC Second Assessment Report and Beyond. Mitigation and Adaptation Strategies for Global Change, 1(4), 385–403. https://doi.org/10.1023/B:MITI.0000027387.05917.ae

FAO. (2016). Strategic Plan of Action for ASEAN Cooperation in Crops, 2016-2020. | FAOLEX. https://www.fao.org/faolex/results/details/en/c/LEX-FAOC197568/

FAO. (2020). Agricultural research in Southeast Asia. | FAO. https://www.fao.org/family-farming/detail/en/c/1333395/

Ghosh, S. C., Asanuma, K., Kusutani, A., & Toyota, M. (2000). Effects of Temperature at Different Growth Stages on Nonstructural Carbohydrate, Nitrate Reductase Activity and Yield of Potato. Environment Control in Biology, 38(4), 197–206. https://doi.org/10.2525/ecb1963.38.197

Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103(2), 351–370. https://doi.org/10.2134/agronj2010.0303

ILO. (2022). Asia–Pacific Sectoral Labour Market Profile: Agriculture | International Labour Organization. https://www.ilo.org/resource/brief/asia-pacific-sectoral-labour-market-profile-agriculture

Islam, M. S., & Kieu, E. (2020). Tackling Regional Climate Change Impacts and Food Security Issues: A Critical Analysis across ASEAN, PIF, and SAARC. Sustainability, 12(3), 883 (page). https://doi.org/10.3390/su12030883

Mendelsohn, R., Dinar, A., & Williams, L. (2006). The distributional impact of climate change on rich and poor countries. Environment and Development Economics, 11(2), 159–178. doi:10.1017/S1355770X05002755

Nunti, C., Somboon, K., & Intapan, C. (2020). The Impact of Climate Change on Agriculture Sector in ASEAN. Journal of Physics: Conference Series, 1651(1), 012026. https://doi.org/10.1088/1742-6596/1651/1/012026

Pressman, E., Peet, M., & Pharr, M. (2002). The Effect of Heat Stress on Tomato Pollen Characteristics is Associated with Changes in Carbohydrate Concentration in the Developing Anthers. Annals of Botany, 90(5), 631–636. https://doi.org/10.1093/aob/mcf240

Raj, S., Roodbar, S., Brinkley, C., & Wolfe, D. W. (2022). Food Security and Climate Change: Differences in Impacts and Adaptation Strategies for Rural Communities in the Global South and North. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.691191

Rosenzweig, C., & Parry, M. L. (1994). Potential impact of climate change on world food supply. Nature, 367(6459), 133–138. https://doi.org/10.1038/367133a0

Venkatappa, M., Sasaki, N., Huang, J., & Phoumin, H. (2021). Impacts of Climate Change on Agriculture in South-East Asia—Drought Conditions and Crop Damage Assessment. In H. Phoumin, F. Taghizadeh-Hesary, F. Kimura, & J. Arima (Eds.), Energy Sustainability and Climate Change in ASEAN (pp. 3–38). Springer. https://doi.org/10.1007/978-981-16-2000-3_1

Webber, H., Lischeid, G., Sommer, M., Finger, R., Nendel, C., Gaiser, T., & Ewert, F. (2020). No perfect storm for crop yield failure in Germany. Environmental Research Letters, 15(10), 104012. https://doi.org/10.1088/1748-9326/aba2a4

Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences, 107(33), 14562–14567. https://doi.org/10.1073/pnas.1001222107

Zhai, F., & Zhuang, J. (2009). Agricultural Impact of Climate Change: A General Equilibrium Analysis with Special Reference to Southeast Asia. 131. https://www.adb.org/publications/agricultural-impact-climate-change-general-equilibrium-analysis-special-reference

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Southeast Asian Journal of Agriculture and Allied Sciences