Genotype-Specific Responses of Boar Semen to Organic Semen Extenders in Large White and Duroc Breeds
PDF

Keywords

artificial insemination
boar semen
coconut water
Duroc
honey
large white
mCASA
organic semen extender
sperm motility
time-series design

How to Cite

Capalad, M. A. (2025). Genotype-Specific Responses of Boar Semen to Organic Semen Extenders in Large White and Duroc Breeds. Southeast Asian Journal of Agriculture and Allied Sciences, 5(2), 11–26. https://doi.org/10.63943/sajaas.vol5iss2art115pp11-26

Abstract

This study focused on evaluating the motility rate of semen from Large White and Duroc breeds using organic semen extenders—specifically coconut water and honey—compared to a commercial extender used as the control. It explored the composition of these organic extenders, the morphology of boar semen based on normal fraction, and motility rate, which was assessed using a mobile computer-assisted sperm analyzer (mCASA). This study employed a Multiple Time Series Design (MTSD), wherein evaluations were both performed before processing, with the sperm temperature at 35 °C, and after processing. The samples were monitored at 18 °C from 8 a.m. to 8 p.m. at 2-hour intervals. Monitoring occurred after 2, 4, 6, 8, 10, and 12 hours across all treatments, including the control. Results showed that honey-based Treatment 4 best preserved motility in Large White boar semen for up to 12 hours, outperforming all other treatments, including the commercial extender. In contrast, coconut water-based Treatment 1 maintained high motility in Duroc semen for up to 48 hours, exceeding both commercial and organic alternatives. These findings suggest breed-specific responses to extenders and highlight the potential of Treatments 4 and 1 as effective, organic option. Future studies should consider genotype-specific traits to optimize semen preservation.

https://doi.org/10.63943/sajaas.vol5iss2art115pp11-26
PDF

References

Arakeri, S., Tandle, M. K., Suranagi, M. D., Tikare, V., Bijurkar, R. G., Rao, J., & Kulkarni, S. (2020). Evaluation of sperm motility with Glutathione and honey in skim milk based extenders by CASA in boer buck. International Journal of Current Microbiology and Applied Sciences, 9(5), 3420–3427. https://doi.org/10.20546/ijcmas.2020.905.406

Baiee, F. H., Wahid, H., Rosnina, Y., Ariff, O. M., Yimer, N., Salman, H., & Khumran, A. M. (2017). Hypo-osmotic swelling test modification to enhance cell membrane integrity evaluation in cryopreserved bull semen. Pertanika Journal of Tropical Agricultural Science, 40(2), 253–264. https://www.researchgate.net/publication/316662960

Balogun, K. B., Nicholls, G., Sokunbi, O., & Stewart, K. R. (2021). PSV-9 effects of natural honey inclusion in dilution and freezing extenders on frozen-thawed semen quality in boars. Journal of Animal Science, 99(Supplement_1), 211. https://doi.org/10.1093/jas/skab054.346

Banday, M., Lone, F., Rasool, F., Rather, H., & Rather, M. (2017). Does natural honey act as an alternative to antibiotics in the semen extender for cryopreservation of crossbred ram semen? Iranian Journal of Veterinary Research, 18(4), 258–263. https://pubmed.ncbi.nlm.nih.gov/29387098/

Business Queensland. (2022). Storing boar semen. Queensland Government. https://www.business.qld.gov.au/industries/farms-fishing-forestry/agriculture/animal/industries/pigs/breed/boars/store

Bustani, G. S., & Baiee, F. H. (2021). Semen extenders: An evaluative overview of preservative mechanisms of semen and semen extenders. Veterinary World, 14(5), 1220–1233. https://doi.org/10.14202/vetworld.2021.1220-1233

Castro, C., Dichoso, G., Landicho, M., & Sangel, P. (2020). Honey or pineapple juice as extender components for Quezon native and Duroc boar semen at different storage temperatures. Philippine Agricultural Scientist, 103(4), 322–336. https://www.ukdr.uplb.edu.ph/journal-articles/132/

Chankitisakul, V., Tubtimtong, N., Boonkum, W., & Vongpralub, T. (2023). Effects of gelatin and oxytocin supplementation in a long-term semen extender on boar semen quality and fertility potential. Animal Bioscience, 37(2). https://doi.org/10.2139/ssrn.4332483

Chapman, F. A. (2016). A semen extender for the short-term storage of fish sperm: FA193 FA193, 5 2016. EDIS, 2016(5), 3. https://doi.org/10.32473/edis-fa193-2016

Chung, E. L., Nayan, N., Nasir, N. S., Hing, P. S., Ramli, S., Rahman, M. H., & Kamalludin, M. H. (2019). Effect of honey as an additive for cryopreservation on bull semen quality from different cattle breeds under tropical condition. Journal of Animal Health and Production, 7(4), 171–178. https://doi.org/10.17582/journal.jahp/2019/7.4.171.178

Colenbrander, B., Feitsma, H., & Grooten, H. J. (2020). Optimizing semen production for artificial insemination in swine. Bioscientifica Proceedings. https://doi.org/10.1530/biosciprocs.14.0014

Colicev, A., & Pauwels, K. (2022). Multiple time series analysis for organizational research. Long Range Planning, 55(2), 102067. https://doi.org/10.1016/j.lrp.2020.102067

Crowell, S., & Flowers, W. L. (2018). Boar spermatozoa more resistant to temperature shock. National Hog Farmer. https://www.nationalhogfarmer.com/hog-reproduction/boar-spermatozoa-more-resistant-to-temperature-shock

Czubaszek, M., Andraszek, K., Banaszewska, D., & Walczak-Jędrzejowska, R. (2019). The effect of the staining technique on morphological and morphometric parameters of boar sperm. PLOS ONE, 14(3), e0214243. https://doi.org/10.1371/journal.pone.0214243

Diwan, A. (2021). Artificial insemination technique for inducement of larval production. In Biotechnology of penaeid shrimps (pp. 331–353). CRC Press. https://doi.org/10.1201/9781003155966-9

Domain, G., Banchi, P., Ali Hassan, H., Eilers, A., Lannoo, J., Wydooghe, E., Niżański, W., & Van Soom, A. (2022). Sperm gone smart: A portable device (iSperm®) to assess semen concentration and motility in dogs. Animals, 12(5), 652. https://doi.org/10.3390/ani12050652

Dziekonska, A., Swiader, K., Koziorowska-Gilun, M., Mietelska, K., Zasiadczyk, L., & Kordan, W. (2017). Effect of boar ejaculate fraction, extender type and time of storage on quality of spermatozoa. Polish Journal of Veterinary Sciences, 20(1), 77–84. https://doi.org/10.1515/pjvs-2017-0011

Esguerra, J. P., Quimio, J. M., Dichoso, G., Junsay, C. A., Magpantay, V., & Sangel, P. (2020). Coconut water with either tomato juice or garlic extract as extender components for Paraoakan native chicken semen at different storage temperatures. Philippine Journal of Science, 149(1). https://doi.org/10.56899/149.01.11

Gerzilov, V., & Andreeva, M. (2021). Effect of three extenders on the motility and morphological characteristics of spermatozoa in diluted Muscovy semen stored at 4 °C up to 120 hours. Bulgarian Journal of Agricultural Science, 27(6), 1187–1193. https://www.agrojournal.org/27/06-18.pdf

Gonzalez-Castro, R. A., & Herickhoff, L. A. (2022). Effect of hypothermal storage on motility, viability, acrosome integrity and intracellular zinc of boar sperm. Animal Reproduction Science, 247, 107128. https://doi.org/10.1016/j.anireprosci.2022.107128

Gorski, K., Kondracki, S., & Wysokińska, A. (2017). Ejaculate traits and sperm morphology depending on ejaculate volume in Duroc boars. Journal of Veterinary Research, 61(1), 121–125. https://doi.org/10.1515/jvetres-2017-0015

Hussain, M., Begum, S. S., Kalita, M. K., Ahmed, K. U., & Nath, R. (2018). Additives used in semen preservation in animals: A short review. International Journal of Chemical Studies, 6(5), 354–361. Retrieved May 20, 2025, from https://www.researchgate.net/profile/dr-mokhtar-hussain-2/publication/334397724_additives_used_in_semen_preservation_in_animals_a_short_review/links/5d272d58458515c11c25e2a6/additives-used-in-semen-preservation-in-animals-a-short-review.pdf

Knox, R. (2016). Artificial insemination in pigs today. Theriogenology, 85(1), 83–93. https://doi.org/10.1016/j.theriogenology.2015.07.009

Lopez Rodriguez, A., Van Soom, A., Arsenakis, I., & Maes, D. (2017). Boar management and semen handling factors affect the quality of boar extended semen. Porcine Health Management, 3(1), 1–13. https://doi.org/10.1186/s40813-017-0062-5

Luther, A., Nguyen, T. Q., Verspohl, J., & Waberski, D. (2023). Storage of boar semen at 17 °C without conventional antibiotics in an extender containing an organic bactericidal substance. Frontiers in Veterinary Science, 10, 1294903. https://doi.org/10.3389/fvets.2023.1294903

Machebe, U., Ugwu, S., & Akandi, A. (2015). Survivability of boar sperm stored under room temperature in extenders containing some natural products. Open Access Animal Physiology, 7, 57–63. https://doi.org/10.2147/oaap.s71360

Magapor. (2019). Choosing the best boar semen extender. Magapor | Just for pigs. https://magapor.com/en/technical-news/choosing-the-best-boar-semen-extender/

Malik, A. (2018). Effects of honey supplementation into the extender on the motility, abnormality and viability of frozen-thawed Bali bull spermatozoa. Asian Journal of Animal and Veterinary Advances, 13(2), 109–113. https://doi.org/10.3923/ajava.2018.109.113

Mawin-Ray, M. B., Yekti, A. P., Sangur, Y. F., Utami, P., Syah, H. A., Rachmawati, A., & Susilawati, T. (2025). Comparison of Duroc boar liquid semen quality diluted with Beltsville thawing solution and egg yolk coconut water at different storage temperatures. International Journal of Scientific Research and Engineering Development, 8(1), 1278–1285. https://ijsred.com/volume8/issue1/IJSRED-V8I1P140.pdf

Monger, X. C., Gilbert, A., Saucier, L., & Vincent, A. T. (2021). Antibiotic resistance: From pig to meat. Antibiotics, 10(10), 1209. https://doi.org/10.3390/antibiotics10101209

Odrada, P. M., Purnamasari, L., & Cruz, J. F. (2023). The effects of water-based coconut extenders on semen preservation: A review. Jurnal Sain Peternakan Indonesia, 18(1), 20–26. https://doi.org/10.31186/jspi.id.18.1.20-26

Pardede, B. P., Maulana, T., Kaiin, E. M., Agil, M., Karja, N. W., Sumantri, C., & Supriatna, I. (2021). The potential of sperm bovine protamine as a protein marker of semen production and quality at the national artificial insemination center of Indonesia. Veterinary World, 14(9), 2473–2481. https://doi.org/10.14202/vetworld.2021.2473-2481

Patrick, S., Mirau, S., Mbalawata, I., & Leo, J. (2023). Time series and ensemble models to forecast banana crop yield in Tanzania, considering the effects of climate change. Resources, Environment and Sustainability, 14, 100138. https://doi.org/10.1016/j.resenv.2023.100138

Pezo, F., Romero, F., Zambrano, F., & Sánchez, R. (2018). Preservation of boar semen: An update. Reproduction in Domestic Animals, 53(Suppl. 3), 89–97. https://doi.org/10.1111/rda.13389

Phan, H. P., & Ngu, B. H. (2016). Undertaking experiments in social sciences: Sequential, multiple time series designs for consideration. Educational Psychology Review, 29(4), 847–867. https://doi.org/10.1007/s10648-016-9368-0

Reckova, Z., Filipcík, R., Souskova, K., Kopec, T., Hosek, M., & Pesan, V. (2022). The efficiency of different types of extenders for semen cooling in stallions. Animal Bioscience, 35(5), 670–676. https://doi.org/10.5713/ab.21.0300

Rodriguez, J. M. (2016). Effectiveness of coconut water as boar semen extender. PRISM, 21(1), 1–7. https://norsu.edu.ph/norsuprism/index.php/norsuprism/article/view/14

Sawitri, N. M., Trilaksana, I. G. N. B., & Puja, I. K. (2021). Evaluation of Bali cattle semen quality during cryopreservation with coconut water-based extenders. International Journal of Veterinary Science, 10(4), 329–334. https://doi.org/10.47278/journal.ijvs/2021.064

Schweizer, M. L., Braun, B. I., & Milstone, A. M. (2016). Research methods in healthcare epidemiology and antimicrobial stewardship—Quasi-experimental designs. Infection Control & Hospital Epidemiology, 37(10), 1135–1140. https://doi.org/10.1017/ice.2016.117

Tafuli, A., Mata Hine, T., & Marawali, A. (2024). Improvement of the quality of Landrace pig spermatozoa in diluent of young coconut water and Tris combination. Jurnal Sosial dan Sains, 4(5), 403–410. https://doi.org/10.59188/jurnalsosains.v4i5.1307

Tshabalala, M. M., Mphaphathi, M. L., Netshirovha, T. R., Nephawe, K. A., Pilane, C. M., & Nedambale, L. (2021). Study the efficacy of different concentrations of coconut water on boar semen following equilibration at 18 °C for different hours. American Journal of Animal and Veterinary Sciences, 17(4), 281–287. https://doi.org/10.3844/ajavsp.2022.281.287

Waberski, D., Riesenbeck, A., Schulze, M., Weitze, K. F., & Johnson, L. (2019). Application of preserved boar semen for artificial insemination: Past, present and future challenges. Theriogenology, 137, 2–7. https://doi.org/10.1016/j.theriogenology.2019.05.030

Wynn, D. (2017). Nutrition studies on mature and immature coconut meat and coconut water. Yadanabon University Research Journal, 8, 1–10. https://meral.edu.mm/records/447?community=ydbu

Yimer, N., Muhammad, N., Sarsaifi, K., Rosnina, Y., Wahid, H., Khumran, A. M., & Kaka, A. (2015). Effect of honey supplementation into Tris extender on cryopreservation of bull spermatozoa. Malaysian Animal Science Journal, 18(2), 47–54. https://www.msap.my/pdf/mjas_18_2/5.Kazhar-effect_r4.pdf

Zaghloul, A. (2017). Relevance of honey bee in semen extender on the quality of chilled-stored ram semen. Journal of Animal and Poultry Production, 8(1), 1–5. https://doi.org/10.21608/jappmu.2017.45740

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Southeast Asian Journal of Agriculture and Allied Sciences